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Abstract

The classic Frankignoul-Hasselmann hypothesis for sea surface temperature (SST) variability

of an oceanic mixed layer assumes that the surface heat flux can be simply parameterized

as noise induced by atmospheric variability plus a linear temperature relaxation rate. It

is suggested here, however, that rapid fluctuations in this rate, as might be expected for

example due to gustiness of the sea surface winds, are large enough that they cannot be

ignored. Such fluctuations cannot be fully modeled by noise that is independent of the state

of the SST anomaly itself. Rather, they require the inclusion of a state-dependent (that

is, multiplicative) noise term, which can be expected to impact both persistence and the

relative occurrence of high amplitude anomalies.

As a test of this hypothesis, daily observations at several Ocean Weather Stations are

examined. Significant skewness and kurtosis of the distributions of SST anomalies is found,

which is shown to be consistent with a multiplicative noise model. This model (counter-

intuitively) implies that the multiplicative noise increases the persistence, predictability,

and variance of midlatitude SST anomalies. The effect is strongest on annual and longer

timescales and may, therefore, be important to understand and model interannual and in-

terdecadal SST and related climate variability.
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1 Introduction

The typical timescale of atmospheric variability is considerably shorter than the typical

timescale of sea surface temperature (SST) variability. As a result, the effect of atmospheric

forcing of SST anomalies T ′ can be represented by a simple stochastic model of the oceanic

mixed layer,

dT ′

dt
= −λ T ′ + ξ (1)

(Hasselmann 1976; Frankignoul and Hasselmann 1977, hereafter FH), where λ is a rate coef-

ficient representing the transfer of heat from the slowly evolving mixed layer heat anomaly,

and ξ is Gaussian white-noise representing surface heat fluxes due to rapidly varying weather

fluctuations. The e-folding timescale of SST variability is thus τ = 1/λ. Such a simple uni-

variate linear system has been surprisingly successful in describing much of the variability

of anomalous midlatitude SSTs (e.g., Frankignoul and Hasselmann 1977; Reynolds 1978;

Blaauboer et al. 1982; Hall and Manabe 1997).

This classical stochastic view implies that SST anomalies obey a Gaussian distribution.

Indeed, monthly averaged SST anomalies are nearly Gaussian. Yet we might expect them to

be Gaussian because of the Central Limit Theorem (e.g., Gardiner 2004; Paul and Baschnagel

1999), i.e., the Gaussianity may be due solely to the averaging procedure and not to any

particular dynamical process. In fact, as we will show, observations from Ocean Weather

Stations (OWSs) reveal that probability distribution functions (PDFs) of daily averaged SST

anomalies are actually significantly non-Gaussian.

The presence of non-Gaussianity suggests the possible importance of nonlinearity to the
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evolution of SST anomalies, appearing to contradict the FH paradigm. However, if this

nonlinearity also acts on a very short timescale, then the FH paradigm may only require a

small adjustment. Suppose the linear coefficient in (1) contains a rapidly varying component;

that is, λ = λ̄+λ′, where λ̄ is constant but λ′ varies rapidly; note that the time mean of λ′ is

zero. Such rapid fluctuations in the feedback coefficient might be expected, for example, if it

has a dependence upon not just a constant or slowly varying wind speed, but also upon the

gustiness of the winds. Then we might also approximate λ′ as white-noise. However, unlike

the noise term ξ which is independent of T ′, a stochastically fluctuating λ′ would result in a

second noise term λ′T ′ which depends upon the SST anomaly itself. This state-dependent

noise is also known as multiplicative noise. A system driven with such multiplicative noise

has two characteristics of interest here. First, in general it will have a non-Gaussian PDF,

even though the deterministic portion of (1) is linear. Second, although the autocorrelation

function for T ′ remains an exponential, the multiplicative noise acts to effectively increase

the time scale τ through a phenomenon known as noise-induced drift, which occurs because

the time mean of the multiplicative noise term, 〈λ′T ′〉, is not zero. For a mathematically

more advanced discussion, see, for example, Gardiner (2004); Kloeden and Platen (1992),

and see Penland (2003a,b) for a related discussion focusing on climate dynamics.

In this paper we present a simple univariate stochastic model of midlatitude SST anoma-

lies that accounts for rapid fluctuations in surface heat fluxes, such as might result from the

gustiness of sea surface winds. The parameters of this model are determined from OWS data

whose non-Gaussian probability distribution functions (PDFs) are described in section 2. In

section 3 we justify a noise component of λ through a scale analysis of wind-driven surface
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heat flux, as parameterized by simple heat flux bulk formulae. This hypothesis is then tested

in section 4 by estimating both linear and nonlinear models from data. Furthermore, the

nonlinear model is used to examine the impact of multiplicative noise on the predictability

and low-frequency variability of SST anomalies. Finally, section 5 provides a summary and

discussion.

2 PDFs of daily averaged SST

To re-examine the effect of stochastic weather fluctuations on anomalous SSTs, we first

analyze the PDFs of daily averaged SST anomalies obtained from Ocean Weather Station

records [see Dinsmore (1996) for a brief history of Ocean Weather Stations and Diaz et al.

(1987) for climatological summaries]. Table 1 lists the stations analyzed, their locations,

and the time periods of data availability. We restrict our study to locations where univariate

linear stochastic theory provides a good fit to observed anomalous SST variability: P, N,

and V in the North Pacific, and K in the North Atlantic.

2.1 Data

Daily SST anomalies were determined as follows. First, daily averages were calculated from

the raw 3-hourly data. Then the climatological monthly averages were estimated. A daily

climatology was constructed by linear interpolation using these monthly averages as base

points. Finally, daily anomalies were calculated by subtracting the daily climatology from

the mean daily values.
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We analyzed the resulting full-year SST anomaly timeseries. To account for possible

effects of the annual cycle we analyzed extended summer (May-October) and extended winter

(November-April) subsets as well.

2.2 Probability Density Functions

PDFs are a useful measure to examine the dynamics of stochastic systems. In particular,

deviations from Gaussianity, or anomalous statistics, can shed light on the underlying dy-

namics (e.g., Peinke et al. 2004; Sura et al. 2005). PDFs can be estimated using different

techniques. The easiest way is to calculate the normalized histogram by binning the data.

This is a non-parametric method because no assumptions are made of the functional form

of the PDF. Non-parametric methods are normally used as a reliable first-order PDF esti-

mate when there is no reasonable physical justification for a particular distribution. For a

parametric estimation of a PDF one specifies the functional form of the PDF in advance,

and the parameters of the PDF are then determined by a Maximum Likelihood Estimate

(MLE). The parametric distribution we use is the skew t-distribution, a skewed and kurtosed

alternative to the normal distribution which is capable of adapting very closely to skewed

and heavy-tailed data (Azzalini and Capitanio 2003; Jones and Faddy 2003). We use both

methods here.

In the following section, all discussed deviations from Gaussianity are significant at least

at the 95% confidence level, with large amplitude deviations significant at the 99% confidence

level, as determined by the Monte-Carlo method employed in, e.g., Sura et al. (2005).
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2.3 Ocean Weather Station P

Of all the Ocean Weather Stations, OWS P may be best suited for linear univariate stochastic

theory (Hall and Manabe 1997). It has a long high-quality record, the El Niño-Southern

Oscillation (ENSO) signal is relatively weak there (e.g., Alexander et al. 2002), and it is

located far from strong currents.

The PDFs of full-year daily SST anomalies, related Gaussian distributions, and anomalies

(deviations from Gaussianity) at OWS P are shown in Fig. 1. In Fig. 1a the PDF (steps) is

calculated as a normalized histogram, whereas in Fig. 1b the PDF (solid line) is calculated

as a MLE to a skew t-distribution. Comparison in either case to the related Gaussian

distribution (dashed lines) shows that the PDF has a strong peak, weak flanks, and heavy

tails relative to a Gaussian distribution (i.e., the PDF is kurtosed). Furthermore, the PDF is

slightly skewed. The skew t-distribution captures all the important features of the histogram:

the strong peak, weak flanks, heavy-tails, and the skew.

2.4 Other Ocean Weather Stations

Hall and Manabe (1997) have shown that while over most of the world ocean anomalous

SST variability is consistent with the simple FH model, there are a few regions where this

stochastic theory cannot be applied. Near strong boundary currents like the Gulf Stream and

the Kuroshio (and both their extensions, the North Atlantic and the North Pacific currents)

mesoscale eddies enhance SST variability at high-frequencies. Furthermore, in the northern

North Atlantic, large scale variations of the thermohaline ocean circulation are responsible
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for much of the low-frequency variations. And, of course, regions with sea-ice are excluded

as well.

After analyzing data from the remaining stations, we find that, in agreement with Hall

and Manabe (1997), there are four stations with long records where the autocorrelation

functions (and the spectra) can be modeled with univariate red noise: P, N, and V in the

North Pacific, and K in the North Atlantic. These stations are all in midlatitudes and far

away from strong currents. The PDFs (full year, extended summer and winter) of SST

anomalies at these stations are shown in Fig. 2 (we only show the skew t-distributions in

Fig. 2; the histograms have a similiar shape). The PDFs at OWSs K and N are qualitatively

similar to the PDF at OWS P (Fig. 1), although their deviations from Gaussianity are

somewhat larger. OWS V shows a slightly different behavior: the PDFs have similar kurtosis

as the other stations, but the skew has the opposite sign. In all cases, similar deviations

from Gaussianity is present in both the winter and summer subsets.

To summarize, the non-Gaussianity at OWS P is not unique but a general feature at

OWSs where linear stochastic theory can be applied. Furthermore, the non-Gaussianity does

not appear strongly seasonally dependent, suggesting that the full-year daily SST anomaly

record can be used to study anomalous SST variability.
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3 Extending the Frankingnoul-Hasselmann null hy-

pothesis

Having shown that daily SST anomalies at OWS P, and other stations where univariate

stochastic theory is applicable, obey a non-Gaussian distribution, we next show how rapidly

fluctuating winds could act to produce similar non-Gaussianity. The model developed is a

straightforward extension of the classic FH stochastic SST anomaly model, in which we add

a stochastic process to the constant feedback coefficient.

3.1 The basic mixed layer equations

The simplest model for midlatitude SSTs assumes a well mixed and horizontally homoge-

neous layer of constant depth h and temperature T in contact with the overlying atmosphere,

but isolated from the layers below the thermocline. For the sake of simplicity, all effects of

horizontal advection and salinity are ignored as well. Then the local heat budget equation

can be written as (see, e.g. Frankignoul and Hasselmann 1977)

dT

dt
=

f(T, Ta, q, |U|, R)

h
, (2)

where f denotes the total heat flux through the air-sea interface, which depends on the SST

T , air temperature Ta, humidity q, wind speed |U|, and the net radiation R. Neglecting the

radiation flux, the bulk formula for the heat flux f is

f =
ρaCa

ρwCw

CH(1 + B)(Ta − T )|U| , (3)
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where CH is the bulk transfer coefficient of the latent and sensible heat flux, B is the inverse

Bowen ratio (ratio of latent to sensible heat flux), ρw and ρa are the densities of sea-water

and air, and Cw and Ca are the specific heats (at constant pressure) of sea-water and air.

For small temperature anomalies ∆T a Taylor expansion of the heat flux f with respect

to T = T0 + ∆T yields

d

dt
(T0 + ∆T ) =

1

h

[
f(T0) +

∂f

∂T

∣∣∣
T0

∆T

]
. (4)

Assuming that the evolution of the temperature T0 is balanced by the time mean of f(T0) =

〈f〉(T0)+f ′(T0), that is dT0/dt = 〈f〉(T0)/h, and defining ∆T ≡ T ′ the equation for the SST

anomaly T ′ becomes:

dT ′

dt
=

f ′(T0)

h
+

1

h

∂f

∂T

∣∣∣
T0

T ′ . (5)

As in FH variations in the atmospheric temperature Ta, the inverse Bowen ratio B, and the

transfer coefficient CH are ignored. That is, we assume that heat flux variability is only due

to wind speed variability. This is a reasonable approximation in our simple framework, since

heat flux anomalies are strongly related to wind speed anomalies (e.g., Ronca and Battisti

1997; Alexander and Scott 1997). The wind speed is split into a mean 〈|U|〉 and a deviation

from the mean |U|′, so that the mean heat flux 〈f〉(T0) depends upon 〈|U|〉 and the heat

flux deviation f ′(T0) depends upon |U|′ . Then the anomalous heat flux f ′ and the heat flux

derivative ∂f/∂T become

f ′(T0) =
ρaCa

ρwCw

CH(1 + B)(Ta − T0)|U|′ (6)

and

∂f

∂T

∣∣∣
T0

≡
〈

∂f

∂T

〉
+

(
∂f

∂T

)′
= − ρaCa

ρwCw

CH(1 + B) [〈|U|〉+ |U|′] , (7)
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where ∂f/∂T is split into a mean heat flux derivative 〈∂f/∂T 〉 = −(ρaCa)(ρwCw)−1CH(1 +

B)〈|U|〉 and an anomalous heat flux derivative (∂f/∂T )′ = −(ρaCa)(ρwCw)−1CH(1+B)|U|′.

Note that f ′ is a function of only |U|′, whereas ∂f/∂T is a function of both 〈|U|〉 and |U|′.

3.2 Scaling the equation

To see if a multiplicative noise term is necessary, we first scale the terms in Eqs. (5), (6), and

(7). Using typical parameters for the conditions at OWS P (see Table 2) we obtain f ′(T0)/h =

O(0.2 K day−1), h−1〈∂f/∂T 〉T ′ = O(0.1 K day−1), and h−1(∂f/∂T )′ T ′ = O(0.05 K day−1).

Note that the relative importance of h−1〈∂f/∂T 〉T ′ and h−1(∂f/∂T )′ T ′ is solely determined

by the ratio of the mean wind speed 〈|U|〉 to the strength of the wind speed anomaly |U|′.

As this ratio is only about 2 to 1 throughout the midlatitude storm tracks (e.g., Monahan

2005) the effect of wind fluctuations on SST anomalies may come through the variability of

not only the anomalous heat flux f ′ but also the anomalous heat flux derivative (∂f/∂T )′.

3.3 Neglecting the anomalous heat flux derivative (∂f/∂T)′:

Modeling SST anomalies with additive noise

In the stochastic SST model introduced by FH, the anomalous heat flux derivative was

neglected. The heat flux term f ′/h [see Eq. (6)] is parameterized as Gaussian (additive)

white-noise η [scaled by the parameter σ; see Eq. (8) below]. In other words, it is assumed

that |U|′ can be approximated by Gaussian white-noise. This assumption is reasonable

since daily wind speed anomalies are almost uncorrelated and have a distribution that is
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nearly Gaussian. For example, at OWS P wind speed anomalies are almost uncorrelated

after 2–3 days (Fig. 3a) and deviations from Gaussianity are relatively small (Fig. 3b).

Then, treating the term h−1∂f/∂T [see Eq. (7)] as a constant parameter λ = h−1〈∂f/∂T 〉 =

−h−1(ρaCa)(ρwCw)−1CH(1+B)〈|U|〉, FH derived the familiar stochastic differential equation

(SDE):

dT ′

dt
= −λ T ′ + σ η , (8)

with the Gaussian white-noise η satisfying 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′). This is

the SDE of a univariate Ornstein-Uhlenbeck process, also called damped Brownian motion.

When λ is determined from observations, (7) results in the familiar red-noise spectrum

of T ′ in close agreement with observations. However, the PDF of an Ornstein-Uhlenbeck

process is strictly Gaussian and, therefore, not consistent with the results of section 2. Thus,

the classical stochastic model of midlatitude SST variability should be improved to explain

the non-Gaussianity of observed SST anomalies. Here we improve the stochastic model by

including the anomalous heat flux derivative (∂f/∂T )′.

3.4 Including the anomalous heat flux derivative (∂f/∂T)′:

Modeling SST anomalies with multiplicative noise

The scaling analysis of section 3.2 suggests that h−1∂f/∂T should not be a constant param-

eter. Moreover, to be consistent |U|′ should be a stochastic process both in Eqs. (6) and

(7). That is, the anomalous heat flux derivative (∂f/∂T )′ is parameterized as multiplicative

noise, since it is the product of a slowly varying quantity (T ′) and a rapidly varying quantity
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(|U|′). Therefore, we consider the following SDE for T ′:

dT ′

dt
= −λT ′ +

√
2M T ′ ηM +

√
2D ηD (9)

with Gaussian white-noise satisfying

〈ηM(t)ηM(t′)〉 = δ(t− t′) , 〈ηD(t)ηD(t′)〉 = δ(t− t′) . (10)

D and M are constants governing the strength of the additive and multiplicative noise terms.

Note that the actual noise amplitudes are
√

2D and
√

2M ; this definition is solely used for

later mathematical convenience.

As was discussed in the introduction, multiplicative noise acts to lengthen the observed

decorrelation timescale of T ′. The autocorrelation function 〈T ′(t)T ′(s)〉 is given by (Sak-

aguchi 2001; Anteneodo and Tsallis 2003)

〈T ′(t)T ′(s)〉 =
D

λ− 2M
exp (−(λ−M)|t− s|) . (11)

As is the case with purely additive noise (M = 0), the autocorrelation decays exponentially.

However, the decorrelation timescale is now τ = (λ−M)−1 = λ−1
eff . That is, the noise-induced

drift is M , so that stronger multiplicative noise increases the persistence of midlatitude SST

anomalies. The spectrum of SST anomalies S(ω) can be calculated by Fourier-transforming

the autocorrelation function (11):

S(ω) =
D(λ−M)

(λ− 2M)

(
ω2 + (λ−M)2

)−1
. (12)

In addition, the multiplicative noise acts to produce a non-Gaussian stationary PDF of

T ′:

p(T ′) = Θ(D + MT ′
2
)−Π (13)
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(Sakaguchi 2001; Anteneodo and Tsallis 2003) where Π = (λeff + 2M) /2M . The normal-

ization constant Θ is given by:

Θ =
M1/2DΠ−1/2

β(1/2, Π− 1/2)
=

M1/2DΠ−1/2Γ(Π)

Γ(1/2)Γ(Π− 1/2)
(14)

where β(x, y) is the beta-function, and Γ(x) is the gamma-function:

β(x, y) = Γ(x)Γ(y)/Γ(x + y). Having p(T ′) the moments of T ′ can be calculated.

The first (mean) and the third moment (skew) are zero because the problem is symmetric

with respect to T ′ = 0. The second moment (variance) is

〈T ′2〉 ≡
∞∫

−∞

T ′
2
p dT ′ =

D

λeff −M
, (15)

and the fourth moment (kurtosis) is

〈T ′4〉 ≡
∞∫

−∞

T ′
4
p dT ′ =

3D2

λ2
eff − 4λeffM + 3M2

. (16)

4 Inverse Stochastic Models of SST Anomalies

In the following we determine stochastic models for anomalous SST variability from data.

First (in section 4.1) we estimate the parameters of the linear multiplicative noise model

[Eq. (9)]. Second (in section 4.3) we estimate a more general nonlinear stochastic model

from data to test the validity of the linear model. Furthermore, we use the nonlinear model

to explore the impact of multiplicative noise on the predictability and the low-frequency

vatiability of SST anomalies.
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4.1 Linear inverse model

The parameters in (9) can be estimated from data by first determining the variance 〈T ′2〉, the

kurtosis 〈T ′4〉, and the effective damping λeff from the observed autocorrelation function.

For OWS P these are (± one standard error): λeff = 0.0157 ± 0.0002 day−1, 〈T ′2〉 =

0.71 ± 0.01 K2, and 〈T ′4〉 = 1.78 ± 0.06 K4. Then M and D can be found from the two

equations [Eqs. (15) and (16)]. The nonlinear (quadratic) equations for the noise parameters

M and D have only one physically consistent solution: M = 0.0011 ± 0.0003 day−1 and

D = 0.0104 ± 0.0002 K2day−1. The noise amplitudes in Eq. (9) are therefore:
√

2M =

0.0469± 0.0064 day−1/2 and
√

2D = 0.1442± 0.0014 K day−1/2.

Fig. 4 shows the distribution p(T ′) as defined by Eqs. (13) and (14) for λeff =

0.0157 day−1, D = 0.0104 K2day−1 , and M = 0.0011 day−1, the related Gaussian distri-

bution, and the corresponding deviation from Gaussianity. The multiplicative noise causes

the distribution to have a more pronounced peak, weaker flanks, and heavier tails compared

to a Gaussian distribution. That is, the multiplicative noise increases the kurtosis of the

distribution. Thus, this simple model is able to explain the basic (neglecting the skew)

non-Gaussian structure of the observed PDF (Fig. 1).

The effect of multiplicative noise in the linear stochastic model upon the spectrum of

SST variability [Eq. (12)] at OWS P is shown in Fig. 5. The spectrum with pure additive

noise (λ = 0.0168 day−1, D = 0.0104 K2day−1, and M = 0 day−1) is indicated by the

dashed line, and the spectrum with multiplicative noise included (λ = 0.0168 day−1, D =

0.0104 K2day−1, and M = 0.0011 day−1) is indicated by the solid line. Multiplicative noise
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enhances low-frequency SST variability of anomalous SST variability by about 25% (even as

the total noise variance increases only by about 8%).

4.2 Testing the multiplicative white-noise model

When we fit Eq. (9) to the data, we are making two assumptions: that the forcing is white,

and that it is multiplicative. Neither, however, need be true to get a good linear fit of the

autocorrelation function. These assumptions can be tested in a straightforward manner.

The effective drift λeff estimated from data can be used to ’predict’ T ′ after a time step ∆t:

T ′(t+∆t) = −λeff T ′obs(t) ∆t+T ′obs(t). If the white-noise assumption is correct the difference

between the observed value T ′obs(t + ∆t) and the predicted value T ′(t + ∆t) should equal the

white-noise forcing. The autocorrelation function of the residual r ≡ T ′obs(t+∆t)−T ′(t+∆t)

is shown in Fig. 6a. The residual is almost uncorrelated after one time step (one day),

justifying the white-noise approximation.

The PDF of the residual (Fig. 6b) is very close to an exponential distribution (straight

line in logarithmic plot) and is thus highly non-Gaussian. To test whether this residual

represents multiplicative white-noise or merely non-Gaussian additive noise, we executed a

numerical experiment in which the model (8), with λeff = 0.0158 day−1 and additive noise

whose distribution is the same as the residual, is integrated forward for 500000 days. The

resulting PDF differs from that in Fig. 4 and is nearly Gaussian.

This result is not entirely surprising, since a simple scaling argument also shows that non-

Gaussian additive noise alone has no significant effect on the distribution of SST anomalies.
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Since λ ∼ [O(0.02) day−1] while f ′/h ∼ [O(0.2) K day−1], dT ′/dt ≈ f ′/h so T ′ ≈ ∑
j fj/h ∆t,

and the Central Limit Theorem applies. In other words, for sufficiently small λ, non-Gaussian

additive noise will result in a Gaussian distribution of SST anomalies T ′. Thus, the non-

Gaussianity of the observed PDF implies that the residual represents multiplicative noise.

4.3 A nonlinear stochastic inverse model

In the previous sections we showed that the linear model can explain the observed kurtosis

of SST anomalies, but it cannot explain the observed skew. In this section we consider the

most general (nondimensional) form of the univariate SDE that governs the evolution of SST

anomalies,

dT ′

dt
= A(T ′) + B(T ′)η , (17)

where A(T ′) represents all slow processes and B(T ′)η represents the stochastic approxima-

tion to the fast nonlinear processes. The Gaussian white-noise η satisfies 〈η(t)〉 = 0 and

〈η(t)η(t′)〉 = δ(t− t′). Note that the deterministic dynamics in A(T ′) are no longer required

to be linear and that B(T ′)η now represents both multiplicative and additive noise. As in the

linear case, the multiplicative noise produces a drift, such that Aeff = A+(1/2) B (∂B/∂T ′)

(e.g., Gardiner 2004).

Because the individual records from the OWSs are too short to accurately determine the

nonlinear stochastic model of anomalous SST variability, we concatenated the normalized

records from stations where stochastic theory is applicable, and where the skew has the same

sign: K in the North Atlantic, and P, N in the North Pacific (see the discussion in section

2). Note that the concatenated timeseries is nondimensional. The resulting PDF is shown
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in Fig. 7. As in the case of OWS P (Fig. 1), the PDF is calculated both as a normalized

histogram (Fig. 7a) and as a MLE to a skew t-distribution (Fig. 7b). The PDF of the

concatenated record has the same structure as the record from OWS P: it is clearly kurtosed

and slightly skewed. Note, however, that the deviations from Gaussianity are larger for the

concatenated record than for the OWS P record.

The nonlinear model can also be estimated from the data. The effective drift Aeff (T
′) is

found by using its finite-difference definition

Aeff (T
′) = lim

∆t→0

1

∆t
〈T ′(t + ∆t)− T ′〉|T ′(t)=T ′ (18)

(e.g., Siegert et al. 1998; Friedrich et al. 2000; Gradǐsek et al. 2000; Sura and Barsugli 2002;

Sura 2003; Sura and Gille 2003); the result is shown in Fig. 8a (the error bars indicate

± one standard error). Note that Aeff (T
′) is almost linear and acts to damp anomalous

SSTs. Therefore, a linear approximation is justified, as shown by the solid line: Aeff (T
′) ≈

−0.023 T ′. We next use the PDF p(T ′) and the effective drift Aeff (T
′) to determine B(T ′)

from the Fokker-Planck equation (see Sura et al. 2005) corresponding to (17):

B(T ′) =

 2

p(T ′)

T ′∫
−∞

[Aeff (x
′)p(x′)] dx′


1/2

. (19)

The estimated noise B(T ′) for the SST anomalies is shown by the solid line in Fig. 8b; the

dotted line in Fig. 8b shows the optimal linear multiplicative noise obtained by fitting the

variance and the kurtosis of the PDF (Fig. 7) to the linear SDE (9). The linear multiplicative

noise qualitatively captures the main features of B(T ′). However, there is clearly a nonlinear

component to B(T ′), since B(T ′) is not symmetric with respect to T ′ = 0, and the curvature

(second derivative) of B(T ′) is larger on the right hand side of the minimum at T ′ ≈ 0.8
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than on the left hand side (Fig. 8b). Therefore, the noise is stronger for positive SST

anomalies than it is for negative anomalies, resulting in the observed skew. Note that the

weak departure of A(T ′) from linearity contributes very little to the observed skew and

kurtosis.

We next use the effective drift Aeff (T
′) and the noise B(T ′) to determine the real de-

terministic drift A(T ′). Shown in Fig. 9 are the noise-induced drift (1/2) B (∂B/∂T ′), the

real deterministic drift A, and the effective drift Aeff . Note that the noise-induced drift is

almost linear and, as in the linear system discussed in the previous section, acts to undamp

the system. That is, the results of the linear model are confirmed by the nonlinear model.

4.4 Predictability

We might expect that, due to the increase in persistence that results from the noise-induced

drift, SST anomalies driven by multiplicative noise might be potentially more predictable

than those driven by additive noise. The situation may, however, be complicated by increased

uncertainty resulting from the multiplicative noise itself. To assess this issue we compute

a simple measure of predictability, the anomaly correlation of an ensemble mean perfect

forecast with observations, which can be written as:

ρ∞(τ) =
S(τ)√

S(τ)2 + 1
(20)

where S(τ) ≡ s(τ)/σ(τ) is the signal-to-noise ratio and τ is the forecast lead (e.g., Sardesh-

mukh et al. 2000; Newman et al. 2003b). Here the signal s(τ) is the ensemble mean, and

the noise σ(τ) is the ensemble standard deviation. ρ∞(τ) is the expected skill of a perfect
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model in which the signal is determined as the mean of an infinite-member ensemble [see

Sardeshmukh et al. (2000) or Newman et al. (2003b) for a more detailed discussion].

Two different stochastic models are compared the full multiplicative noise model (17),

and a second ”additive noise” model containing the same deterministic term A(T ′) but

in which only additive noise, scaled to yield the (unit) variance of the concatenated SST

anomaly timeseries, is used. That is, the variances of SST anomalies are the same in both

the additive and the multiplicative noise models. Fig. 10 shows the forecast lead at which

expected forecast skill ρ∞ falls below 0.5, as a function of initial condition for the additive

(dashed line) and the multiplicative noise model (solid line). In this simple example, multi-

plicative noise increases the lead time of skillful forecast from large negative SST anomalies

(larger than one standard deviation) by about 5–10 days. Skill from positive anomalies is

actually slightly worse, as in general skill from positive anomalies is lower than skill of similar

amplitude negative anomalies. This result suggests that the anomalous heat flux derivative,

parameterized as multiplicative noise, has a significant impact on the predictability of SST

anomalies.

4.5 Spectra

Finally, the impact of multiplicative noise upon the low-frequency variability of SST anoma-

lies is demonstrated by numerically integrating two different stochastic models, with and

without multiplicative noise. Both models have the same deterministic dynamics A(T ′), but

the additive noise model uses pure additive noise (the strength of the additive noise is given

by the minimum of B(T ′)), whereas the multiplicative noise model uses the full multiplica-
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tive noise term B(T ′) (Fig. 8b). The spectra of both models are shown in Fig. 11. The

spectrum with pure additive noise is indicated by the dashed line, and the spectrum with

multiplicative noise included is indicated by the solid line.

Multiplicative noise enhances the low-frequency variability of anomalous SST variability

by about 100% (even as the total noise variance increases only by about 30%). The linear

model for OWS P showed that the multiplicative noise enhanced the low-frequency variability

of anomalous SST variability by about 25%, whereas the total noise variance increased by

about 8% (Fig. 5). Why is there such a difference between OWS P and the concatenated

record? The non-Gaussianity of the concatenated SST anomaly record is larger than the

non-Gaussianity at OWS P, resulting in correspondingly stronger multiplicative noise. As

confirmed by a linearization of A(T ′) and B(T ′), the spectral difference between OWS P and

the concatenated record is mainly due to the different strengths of the multiplicative noises

and not to nonlinear effects. That means, the linear approximations of A(T ′) and B(T ′) are

very good representations (neglecting the skew) of the underlying physical processes. Again,

the results of the linear model are confirmed by the nonlinear model.

5 Summary and Discussion

In this paper we showed that distributions of daily SST anomalies at several Ocean Weather

Stations are non-Gaussian. Broadly speaking, the distributions have a stronger peak, weaker

flanks, and heavier tails than the related Gaussian distributions. We suggested that this

observed non-Gaussianity can be understood with a simple extension to the FH stochastic
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model of midlatitude SST anomalies, accounting for the effect of rapid variability of surface

winds (parameterized as noise) upon both the surface heat flux and the surface heat flux

derivative (with respect to SST). The latter effect results in multiplicative noise and has

been ignored in many simple stochastic models (e.g., Frankignoul and Hasselmann 1977).

Our key point is that inclusion of this multiplicative noise term allows the FH model to

qualitatively reproduce not only an exponential autocorrelation function, but also the main

features of the observed distributions of SST anomalies. The model (counterintuitively)

also predicts that this multiplicative noise can increase the persistence, predictability, and

low-frequency variability of midlatitude SST anomalies. That is, part of the observed auto-

correlation of SST anomalies is due to the noise-induced drift.

Given that the effect of multiplicative noise appears somewhat stronger in the inverse

model than the simple heuristic model of section 3, there are likely other sources of mul-

tiplicative noise that should be considered. Earlier studies considering multiplicative noise

forcing of SST (Alexander and Penland 1996; Neelin and Weng 1999) suggested that changes

in the SST anomaly could produce changes in atmospheric variability and thus in the forc-

ing term f ′. Note that in our study, multiplicative noise forcing of the mixed layer exists

even if the atmosphere is not sensitive to changes in midlatitude SST. Still, if atmospheric

noise in (9) is a function of T ′, for example if
√

2M T ′ is replaced with
√

2M(T ′) T ′, then

the multiplicative noise might no longer be linear. This is one possible source of the small

deviation of B(T ′) from linearity seen in Fig. 8b.

We have employed a simple approach to focus upon basic effects of multiplicative noise

in the FH framework. Clearly, though, any significant dependence of atmospheric noise

21



upon the SST anomaly could necessitate the use of a stochastic coupled model, such as

that employed by Barsugli and Battisti (1998). They suggested that coupling enhances

the thermal variance in the ocean and the atmosphere by reducing the anomalous air-sea

temperature difference. How surface wind variability impacts their model is a focus of our

current research; note that they considered only thermal noise, whereas changes in wind

variability due to the SST anomaly may require non-local feedbacks.

We have also not considered forcing of midlatitude oceans, particularly the North Pacific,

by the atmospheric bridge that results from ENSO (e.g., Alexander et al. 2002; Newman et al.

2003a). Noise-induced drift could enhance the mean response to ENSO forcing (Sardeshmukh

et al. 2001), particularly where ENSO also increases high-frequency atmospheric variability

(Smith and Sardeshmukh 2000; Compo et al. 2001). For multivariate systems, external

forcing can result in a skewed PDF even if the multiplicative noise term is linear (Sura et al.

2005).

Our results demonstrate that the high-frequency variability of boundary-layer winds and

related heat fluxes are crucial for understanding low-frequency anomalous SST variability.

That is, we see a scale interaction between the fast wind induced heat flux variability and the

slow SST variability. This scale interaction has implications for atmospheric forcing employed

in ocean models, suggesting that the high-frequency variability of boundary layer winds

and related surface fluxes must be accurately simulated to correctly model low-frequency

variability of SSTs.
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Table 1: The Ocean Weather Stations (OWSs) used for this study.

OWS Location Period
P 50◦N, 145◦ W 1949–1981
N 30◦N, 140◦ W 1946–1974
V 34◦N, 164◦ W 1955–1971
K 45◦N, 16◦ W 1949–1975

Table 2: Parameters used to scale the heat flux equations for typical conditions at Ocean
Weather Station P.

Air density ρA = 1.225 Kg m−3

Sea-water density ρW = 1024 Kg m−3

Mixed layer depth h = 50 m
Inverse Bowen ratio B = 8
Bulk transfer coefficient CH = 1.5× 10−3

Specific heat of air Ca = 1004 J Kg−1 K−1

Specific heat of sea-water Ch = 4187 J Kg−1 K−1

Mean wind speed 〈|U|〉 = 8 m s−1

Anomalous wind speed (rms) |U|′ = 4 m s−1
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a)

b)

Figure 1: The PDFs of SST anomalies (in K) at OWS P, related Gaussian distributions, and
deviations from Gaussianity. In (a) the PDF (steps) is calculated as a normalized histogram.
The dashed line is the related Gaussian distribution, whereas the boxes denote deviations
from Gaussianity. Note that the PDF has a strong peak, weak flanks, and heavy tails relative
to a Gaussian distribution (the PDF is kurtosed). Furthermore, the PDF is slightly skewed.
In (b) the PDF (solid line) is calculated as a MLE to a skew t-distribution. The dashed line
is the related Gaussian distribution, whereas the boxes denote deviations from Gaussianity.
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Figure 2: The PDFs of SST anomalies (normalized to make comparison possible) at locations
where stochastic theory is applicable: P, N , and V in the North Pacific, and K in the North
Atlantic (see Table 1 for the locations and recording periods). The PDFs (solid line) are
calculated as a MLE to a skew t-distribution. The dashed lines are the related Gaussian
distributions, whereas the boxes denote deviations from Gaussianity.

31



a)

b)

Figure 3: (a) Autocorrelation function and (b) PDF of wind speed anomalies (m/s) at OWS
P.
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Figure 4: Stationary SST anomaly (in K) probability distributions p(T ′) given by Eqs. (13)
and (14) for λeff = 0.0157 day−1, D = 0.0104 K2day−1, and M = 0.0011 day−1 together
with the related Gaussian distribution and deviations from Gaussianity as in Fig. 1. Note
that the general structure of the analytically derived PDF is very close to that of the observed
one (Fig. 1).

33



Figure 5: Spectra of linearly modeled anomalous SST variability without and with muli-
plicative noise given by Eq. (12). The spectrum with pure additive noise (λ = 0.0168 day−1,
D = 0.0104 K2day−1, and M = 0 day−1) is indicated by the dashed line, and the spectrum
with multiplicative noise (λ = 0.0168 day−1, D = 0.0104 K2day−1, and M = 0.0011 day−1)
inluced is indicated by the solid line. It can be seen that the multiplicative noise enhances
the low-frequency variability of anomalous SST variability by about 25% (even as the total
noise variance increases only by about 8%).
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a)

b)

Figure 6: a) Autocorrelation function and b) PDF of the residual r ≡ T ′obs(t+∆t)−T ′(t+∆t)
for the SST anomalies at OWS P. Note that the autocorrelation is close to zero after one time
step (one day) and that the residual is highly non-Gaussian (very close to an exponential
distribution).
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a)

b)

Figure 7: The PDFs of concatenated SST anomalies (nondimensional), related Gaussian
distributions, and deviations from Gaussianity. In (a) the PDF (steps) is calculated as
a normalized histogram. The dashed line is the related Gaussian distribution, whereas the
boxes denote deviations from Gaussianity. Note that the PDF has a strong peak, weak flanks,
and heavy tails relative to a Gaussian distribution (the PDF is kurtosed). Furthermore, the
PDF is slightly skewed. In (b) the PDF (solid line) is calculated as a MLE to a skew t-
distribution. The dashed line is the related Gaussian distribution, whereas the boxes denote
deviations from Gaussianity.
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a)

b)

Figure 8: (a) The estimated effective drift Aeff (T
′) and (b) the estimated noise B(T ′) for

the concatenated SST anomalies (nondimensional). The error bars in (a) indicate ± one
standard error. The solid line in (a) shows the best linear fit. The dotted line in (b) shows
the optimal linear multiplicative noise obtained by fitting the variance and the kurtosis of
the PDF (Fig. 7) to the SDE (9).
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Figure 9: Noise-induced drift 1/2B(∂B/∂T ′) (solid line), deterministic drift A (dashed line),
effective drift Aeff (dotted line) for the concatenated SST anomaly record.
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Figure 10: Time of skillful forecast (defined as ρ∞ = 0.5) as a function of initial condition
for the additive noise model (dashed line) and the multiplicative noise model (solid line).
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Figure 11: Spectra of nonlinearly modeled anomalous SST variability without and with
muliplicative noise. The spectrum with pure additive noise is indicated by the dashed line,
and the spectrum with multiplicative noise included is indicated by the solid line. It can be
seen that the multiplicative noise enhances the low-frequency variability of anomalous SST
variability by about 100% (even as the total noise variance increases only by about 30%).
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